Linearity-Aware Subspace Clustering
نویسندگان
چکیده
Obtaining a good similarity matrix is extremely important in subspace clustering. Current state-of-the-art methods learn the through self-expressive strategy. However, these directly adopt original samples as set of basis to represent itself linearly. It difficult accurately describe linear relation between real-world applications, and thus hard find an ideal matrix. To better samples, we present clustering model, Linearity-Aware Subspace Clustering (LASC), which can consciously by employing linearity-aware metric. This new method that combines metric learning into joint framework. In our first utilize strategy obtain initial structure discover low-dimensional representation data. Subsequently, use proposed intrinsic with on obtained subspace. Based such learned matrix, inter-cluster distance becomes larger than intra-cluster distances, successfully obtaining cluster result. addition, enrich more consistent knowledge, collaborative for learning. Moreover, provide detailed mathematical analysis show properly characterize correlation samples.
منابع مشابه
Subspace Clustering
Data structure analysis is an important basis of machine learning and data science, which is now widely used in computational visualization problems, e.g. facial recognition, image classification, and motion segmentation. In this project, I would like to deal with a set of small classification problems and use methods like PCA, spectral analysis, kmanifold, etc. By exploring different methods, ...
متن کاملClustering Consistent Sparse Subspace Clustering
Subspace clustering is the problem of clustering data points into a union of lowdimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work [4, 19, 24, 20] provided strong theoretical guarantee for sparse subspace clustering [4], the state-of-the-art algorithm for subspace clu...
متن کاملFuzzy Subspace Clustering
In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to trans...
متن کاملSubspace K-means clustering.
To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning app...
متن کاملModel-based subspace clustering
We discuss a model-based approach to identifying clusters of objects based on subsets of attributes, so that the attributes that distinguish a cluster from the rest of the population may depend on the cluster being considered. The method is based on a Pólya urn cluster model for multivariate means and variances, resulting in a multivariate Dirichlet process mixture model. This particular model-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i8.20857